The Honorable Gray Davis Governor State of California The California State Capitol Sacramento, CA 95815 #### **Dear Governor Davis:** In response to your letter of June 15th, included as Attachment 1, the attached report analyzes the electricity conditions facing California, including the Bay Area black-outs of June 14th and the circumstances giving rise to forced outages and related pricing problems. Your concerns have proved well-founded in light of recent retail price escalations in San Diego and the state-wide wholesale price upsurges. The Bay Area outages and the San Diego price increases are only the first manifestations of problems in our electricity system. We applaud your leadership in calling on the Federal Energy Regulatory Commission to extend California's authority to institute wholesale electricity price caps and to examine whether California's energy markets are yet competitive. Prompt federal action to give California the tools to handle electricity pricing problems is crucial for California's economy and families. You also asked us for findings and recommendations resulting from our investigation. Both the Bay Area black-outs and the San Diego retail price spikes grow from the same roots. Thus, in the report we have described past actions and policy changes that set the stage for the energy supply and pricing issues we now face. This report underscores the importance of collaboration and coordinated action among your agencies and appointees. We suggest that you consider forming a task force to address energy issues, comprised of the following: the President of the Public Utilities Commission, the Chair of the Electricity Oversight Board, the Chair of the Energy Commission, The Secretary of the California Environmental Protection Agency, the Secretary of the Resources Agency and the Director of the Governor's Office of Planning and Research. An Administration task force should work together to develop effective and efficient solutions to the problems identified in this report. We note that this investigation has been conducted on an emergency basis during the past month. This report is not an exhaustive academic, economic or policy analysis of all the issues relating to electricity. Instead, we endeavor to provide merely a context and explanation for recent events and our findings relating thereto. We have faced many challenges and frustrations in obtaining documents and facts that would have enabled us to analyze events fully or come to comprehensive conclusions. We intend to continue our investigation until we have the facts. As we have operated under emergency conditions, we have necessarily relied upon the best information available to us within this time frame. Thus, the information to which we refer may contain inadvertent errors, as we have relied on others' data and projections. We look forward to working with you to find the facts and design responsible and workable solutions to California's electricity challenges. Michael Kahn Chairman Electricity Oversight Board Loretta Lynch President Public Utilities Commission #### **EXECUTIVE SUMMARY** California is experiencing major problems with electricity supply and pricing caused by policies and procedures adopted over the past ten years. This summer, California has seen both electricity price volatility – exemplified by huge increases in wholesale electric prices and increases in retail prices in San Diego – and supply and delivery system instability – culminating in unprecedented black-outs in the Bay Area. These serious, but thus far isolated, examples represent a precursor of what lies ahead for California's economy over the next 30 months. California's reliability deficits and retail price volatility may not improve in that time without a mid-course correction. ## I. Sharply Higher San Diego Prices and Bay Area Black-Outs Warrant Major Concern. Since June, wholesale prices for electrical power in California have increased on average 270% over the same period in 1999, resulting in over \$1 billion in excess payments for electricity. During the week of June 14, purchasers of California power spent \$1.2 billion on electricity, 300% more than they paid during the same period in 1999 and 1/8th of their cost of power for all of 1999. Had the 1999 price cap of \$250/MW been in place in 2000, electricity purchasers would have saved \$110 million on June 14 alone. San Diegans -- the first to be exposed to unregulated electricity prices – saw their June electricity bills double. Other Californians are protected temporarily by retail rate freezes scheduled to expire no later than December 31, 2001. Hot weather, aging power plant and transmission infrastructure, and dysfunctional bidding behavior in the wholesale power markets combined to drive prices up and to create inadequate electricity supplies in the Bay Area. Changes in power system governance resulted in PG&E being ordered to black-out over 100,000 of its customers – without an ability for the State to weigh in on that decision. The Bay Area black-outs, the run up in prices in the wholesale electricity markets, and the rise in retail electricity prices in San Diego show that the new system is not working for California. Because of serious market defects and tight supply of electricity, purchasers of California power will likely pay billions more in electricity costs this year. Moreover, these price increases do not necessarily fund new investments in electricity supply or delivery reliability – they may flow solely to power producer profit margins. As the following chart indicates, supply projections demonstrate California must tackle these problems in the immediate term. California cannot solve its immediate supply shortage by simply waiting or solely by building power plants that cannot come on line for several years. Because of the policies and procedures adopted over the last ten years, the data we need to assess wholesale market pricing and supply scheduling behavior is in the hands of two private, autonomous entities: the California Independent System Operator and the Power Exchange. Despite the Electricity Oversight Board's legislative mandate to oversee those institutions, we have been unable to obtain this data. Nevertheless, as detailed in Section II, we believe enough evidence of questionable behavior exists that the Attorney General should conduct an investigation into these statewide market practices, coordinating with other State agencies, including the PUC and the EOB. Such an investigation would provide the factual foundation that California policymakers and regulators need to recover any illegally obtained profits. Further, the ability of State regulators to obtain information from industry participants and to set and enforce standards is an essential element in restoring stability and predictability for California consumers. II. The New Structure of California's Electricity Market Federalized Electricity Regulation and Limited California's Ability to Protect California Business and Consumers. The complexity of California's problems is a reflection of the complexity of its new market structure. California embarked on an experiment to redesign the electric industry during the 1990s. Past administrations split up California's integrated electricity system, previously dominated by state-regulated utilities, into isolated components and opened the electricity generation component to market competition. The theory behind this policy shift was that competition would lower consumer prices and encourage cleaner, non-nuclear power sources. As the Los Angeles Times succinctly stated "Cheap, reliable power was the aim in the dismantling of a decades-old system of utility monopolies that generated and delivered power and regulators that decided what customers would pay." That system caused business and consumer outcry that Californians were paying on average 50% more for electricity than other states and concerns that state policy favored nuclear and heavily polluting power plants, stifling cleaner, more efficient options. Although laudable, the promises of that restructuring experiment have not materialized. Californians still pay substantially more on average than counterparts in other states who have not shifted to competitive market structures. Compounding the problem, decisionmakers in past administrations traded away the State of California's ability to project, plan for and act to control electricity supply shortages and wholesale and retail price run ups. A momentous consequence of California's attempt to create a market in electricity is that the federal government now regulates California's electric system. Washington D.C. now controls pricing decisions directly at the wholesale level and indirectly at the retail level and, to the extent that supply incentives are correlated to prices, Washington, D.C. now affects California's ability to attract new investment in power plants. In designing the new system, California policymakers relied on projections of supply and demand, and pricing theories flowing from those projections, that have not come true. Past Public Utilities Commission (PUC) and legislative decisions did not, as the Orange County Register noted, take consumer interests into account.² By handing the reins of California's electric system to federal regulators, the State of California no longer possesses the ability to protect California businesses and consumers. Past administrations' willingness to cede the State's authority to the federal government combined with the legislative creation of two non-public supervisory organizations that have no duty to protect the public or consider the retail customer. The "Independent System Operator" (ISO) and the "Power Exchange" (PX), the nonprofit private corporations that operate the State's transmission system and control wholesale pricing policies, are governed by boards whose members can have serious conflicts of
interest. Some of these board members or their companies financially benefit from higher prices in electricity markets. Neither of these private organizations is accountable to the State or its consumers, and neither is charged with the task of keeping electricity prices reasonable for consumers and businesses. The State of California no longer possesses the tools to ensure that its citizens can procure reliable electric service at reasonable prices. Delegating the State's ² Orange County Register, July 23, 2000 _ ¹ LA Times, July 29, 2000, p. A8. responsibility to assure reasonable electricity prices and to assure the safe delivery of power, has produced unacceptable costs. Electricity is too fundamental a necessity for California's economy and indeed for every Californian to leave accountability for its delivery and pricing so fragmented. ## III. State Decision-Makers Must Tackle Each of Four Separate Components That Jointly Affect Electricity Reliability and Prices. California possesses few options to turn back the clock. Any significant change in direction would cause its own disruptions. But to do nothing in hopes that the market will self-correct, perhaps years from now, could stall California's economic expansion because business needs reliable electricity supplies and stable and reasonable electricity rates to continue to grow. Moreover, it is irresponsible to impose severe economic hardship on those consumers caught in the crossfire as California develops a workable electricity market. Much depends on the willingness of federal regulators to cooperate. California may not be able to develop a workable electric market and to fulfill the promises made to California consumers and businesses throughout the 1990s. But, this Administration should do its best to make good on others' promises before concluding that electricity markets cannot become competitive. Within this overall context, we offer the following recommendations. Ideas abound about how to fix the electricity market in California. However, to address only one component of the energy equation without also addressing the others is likely to fail. To act effectively, California decision-makers must tackle four fundamental and intertwined components of the electricity problem: #### Enhance the State of California's Ability to Protect Consumers and Hold Market Players Accountable. Despite the federalization and the fragmentation of the State's electric services, the State of California should protect its businesses and consumers from cartel pricing; collusive behavior; inadequate power plant maintenance and lack of market planning for adequate electricity supplies. The State of California must try to deliver on past promises to create a workable market while shielding businesses and consumers from the current market's flaws. The two most important institutions controlling the sale and transmission of electricity in today's market—the ISO and the PX—are private, autonomous entities. Their governing boards include a large number of market participants, including those likely to profit the most from high prices. But the ISO and PX are not accountable to the State of California or to the ultimate consumers of electricity. The CPUC and the EOB will continue their investigation of this summer's events and enlist the Attorney General to determine how events transpired. Once facts have been developed, specific solutions to improper behavior can be developed. #### Revitalize California's Commitment to Clean, Efficient Energy Use to Improve Electric System Reliability. Power plant construction is a capital-intensive endeavor with long lead times. Today's policymakers should determine what constitutes adequate electricity capacity and should find ways to streamline plant siting and plant construction consistent with environmental requirements. The best way to address immediate shortfalls and to ensure clean and efficient energy generation is to invest in proven energy efficiency and renewable technologies and programs to reduce base load and peak demand. Environmental short-cuts will not resolve California's power needs for Summer 2000 or 2001 and even if tried will likely be precluded or delayed by federal environmental mandates and citizen suits. In the short-term, focusing on reducing base electricity demand through smart energy use and renewable energy sources holds the key to surviving Summer 2001 successfully. Moreover, transmission upgrades – especially in the Bay Area and San Diego – that can be accomplished within one year should also be made a priority. In the longer term, determining what additional supply is needed and where—and building it—should be addressed. #### Address Wholesale Price Volatility in an Era of Electricity Shortages. California must make federal regulators understand the effects of unmitigated wholesale prices on its economy and its citizens. The State and the ISO must speak with one voice before the FERC and request extensions of wholesale price cap authority and ask for a finding that California's wholesale electricity markets are not competitive. The California PX, as the primary market-maker for wholesale energy in California, should work with energy providers and consumers to make more products available to manage wholesale price risk. These options include alternatives to the single price auction in spot markets, and improved price disclosure for the products traded on its exchange. These actions are necessary to provide California with the tools to manage California's developing wholesale electricity market. #### • Manage Retail Price Problems Until a Market Develops and is Fully Functional. California consumers and businesses deserve to know in advance – as San Diegans did not this summer – how and when the price of an essential service like electricity will double. California is now largely constrained by federal mandates from providing comprehensive retail price relief as long as wholesale prices remain so high. If California tried to re-impose a price freeze in San Diego now, federal regulators would likely prevent that action. Emergency actions can alleviate some retail price shocks facing San Diego businesses and consumers caught unaware. Short-term price relief, however, cannot resolve market gaming or fundamental wholesale pricing problems controlled by federal regulators. Any effective plan offering rate relief for San Diegans must be based on a full understanding of the facts, and not on any premature rush to judgment. We have been precluded from obtaining the data necessary to know if the ISO and PX failed to detect manipulation and gaming on several fronts. We do not know how market players acted in price offering and bidding and scheduling. The FERC has just announced an inquiry into national pricing and energy market issues. California should not wait for national findings before it investigates California market practices. We recommend that the California Attorney General immediately subpoena relevant records and data to determine the pricing and offering behavior of market participants; the actions of the ISO and its board members; and the actions of generators in supplying California's energy needs. We intend to work jointly between the PUC and EOB to continue our current inquiry until we can answer unresolved questions and we welcome the Attorney General's participation to find the facts. These actions will provide a sound basis for determining whether the current excessive wholesale price levels are a temporary aberration, or a feature that may require more comprehensive action, such as direct retail price controls. ## IV. Actions Must be Taken In Three Time-Frames to Implement the Four Recommendations. Not only do we need to tackle four legs of California's energy security table, we must take action within appropriate timeframes. Neither the State nor the market can enact or implement all solutions or options immediately or even by Summer 2001 or 2002, when California power supplies will be stretched further still. Thus, some attractive options are not recommended for immediate action, as they cannot be completed or function immediately. Nevertheless, California policymakers must respond to certain immediate problems now to ensure that the short-term crisis does not become chronic. The following recommendations are divided into those that (1) respond to the immediate risk of system crisis; (2) act now on options that will improve California's readiness for Summer 2001; (3) discuss and decide throughout the next six months longer term options and policy choices that respond to system inadequacies. #### 1. Ten Potential Actions to Prepare for an Electricity Emergency: - Require utilities to update outage plans to ensure that (a) the least possible number of customer black-outs in the event of an emergency; (b) essential services (hospitals, emergency dispatch, etc.) retain power and (c) any black-outs are fairly distributed among the State's affected population; - 2. Authorize the California Public Utilities Commission working with the utilities to determine when to shut off electricity in a Stage 3 emergency; - 3. Ensure that computer models used to predict and trigger black-outs and service interruptions are accurate and publicly certified so that black-outs and service interruptions do not occur unless no other option exists; - 4. Call on the federal government and local governments to inventory emergency generation capability in California; institute preparedness plans to switch local and federal buildings to emergency generation to bring loads off the electric system in the a crisis; - 5. Design gear-down plans (versus shut-down) to reduce unnecessary power use in all state facilities and request local and state facilities to do the same when electricity reserves drop below 5% -- such as turning off lobby lights; turning up air conditioning; turning off nonessential lights, equipment and technology;
- 6. Hook up commercial buildings, on a voluntary basis through the internet, to an emergency management control system to enable reductions in unnecessary commercial power use (turning off lobby lighting; turning up air conditioning; turning off nonessential lights, equipment and technology) when reserves drop below 5%; - 7. Require utilities to identify large electricity users in each region and to develop with these customers a program voluntarily to shed nonessential load in emergencies; - 8. Identify, prioritize and coordinate with state and regional agencies, private companies and utilities to obtain air emissions offsets and credits to run existing emergency generation; - 9. Coordinate with utilities and municipal power agencies to identify and prioritize additional sources of emergency generation available for emergency use. - 10. Inventory all state emergency generation; test it for readiness and prepare to switch state buildings to emergency generation to bring state loads off the electric system in a Stage 3 emergency; ## 2. Ten Actions to Consider or Act Upon to Prevent Current Electricity Problems From Spreading in 2001: - 1. Request that the Attorney General expand his investigation statewide and launch PUC/EOB investigation of market manipulation in wholesale electricity purchasing, scheduling and pricing, coordinating with the California Attorney General; - 2. Create a California Energy Council, modeled on the National Security Council, to unify State action to resolve energy problems and to perform integrated energy planning; - 3. Ask FERC for extended wholesale price cap authority to moderate California wholesale market pricing; - 4. Ask FERC to recognize the defects in the California and western regional markets and find that no competitive market exists in California power markets; - 5. Invest in an effective energy efficiency programs to reduce base load, including, assuring energy efficiency in all state buildings; - 6. Invest in demand side management/load shifting programs to reduce peak loads; - 7. Invest in renewable energy development that can be up and running for Summer 2001: - 8. Eliminate potential conflicts of interest in ISO/PX stakeholder boards; - 9. Improve California's ability to obtain ISO and generator data and enhance the State's enforcement capability for power plant maintenance; price manipulation and generation gaming, consistent with protection of proprietary business information; 10. Provide the EOB with effective enforcement ability and additional oversight authority for the ISO and PX. #### 3. Ten Issues to Consider or Act Upon Within the Next Six Months: - Given that retail price caps might result in unintended consequences and further market disruption, it is essential to investigate the impacts of modifying those price caps. After establishing the facts, address feasibility of imposing transitional retail price caps in San Diego; - 2. Evaluate additional price management tools for utilities, including bilateral contracts and hedging authority; - 3. Revise and accelerate Title 24 building standards to reduce unnecessary energy use: - 4. Streamline state power plant siting procedures; consistent with environmental requirements, and prioritize applications to advance clean, BACT+ power plant proposals. - 5. Institute "use-it -or- lose-it" permitting power plant licensing and emissions credits rules to ensure power plants get built; - 6. Invest in targeted transmission upgrades to add capacity and enhance system reliability by Summer 2001, especially in San Diego and San Francisco; - 7. After establishing the facts, procedural options, and long-term consequences, address feasibility of extending the transition period and retail rate freeze throughout the State: - 8. Reform PX pricing protocols and structures to lower wholesale and retail prices and reduce excess profits: - 9. Evaluate utilities' role as providers of last resort; - 10. Determine distribution generation standards and rules for small power generator connection to the electricity grid; As California policymakers engage in developing solutions to these complicated and interrelated energy problems, additional and longer-term issues could also be addressed. We discuss some of these options in the Recommendations Section and invite other creative solutions to be placed on the policy table. There are no simple solutions. But a responsible approach to the current crisis requires recognition that a reliable, reasonably priced electricity supply constitutes an essential underpinning of California's economy and society. We must act on the basis of facts, not theories or assumptions. And we must understand how each piece of the energy puzzle affects the whole picture as we act. # CALIFORNIA'S ELECTRICITY OPTIONS AND CHALLENGES ### REPORT TO THE GOVERNOR Michael Kahn Chairman Electricity Oversight Board Loretta Lynch President California Public Utilities Commission ## I. CALIFORNIA'S ELECTRIC SYSTEM: WHERE WE ARE AND HOW WE GOT HERE California's electric system is in trouble. To understand why, we need to know how it operates and how comprehensive changes in the I990s affected its operation. #### 1. The Electric System in California Is Interconnected The State's electric system has three major components: Generation – Generation refers to the production of electricity at power plants or other facilities. California has other facilities. California about 1,000 generation facilities with 55,500 of capacity, including run by gas and oil, nuclear power, hydro, biomass, wind, solar cogeneration. The is able to import an additional 8,000 MW of these, about 4,500 are under contract as Transmission – the that run from generators carry power throughout State to distribution facilities. California has supplies.ii #### Three Components Form One Electricity System - Electricity is made, delivered, and used, in real time cannot be stored so supply must always be produced to meet demand. - Generation, transmission, and distribution act in concert to provide California's power supply. MW those > and State and, MW "firm" wires to the about - 40,000 miles of power lines that connect utilities to the national and international electric power grid. - Distribution the wires and related facilities that run from customer premises to transmission substations (the sites where high voltage power is stepped down so that it can be delivered to customers on the distribution system); The system's components are highly interrelated, economically and operationally. California can relieve supply problems by constructing new generation plants or transmission facilities. Transmission facilities are a key element of the structure, because they tie together the large power plants, often in remote locations, to the load centers where electricity is consumed. In a competitive system, the ability of generation sellers and generation buyers to interact is mediated by the transmission system. If transmission transfer capacity is inadequate, the ability of loads to get imported power is reduced, and the ability of local generators to raise prices through the exercise of their market power is enhanced. California has a demonstrated need for transmission upgrades for both reasons. As the chart to the shows, California's electricity comes from many different sources, some more costly others, and some cleaner. #### 2. Regulation of California's Electric System Is No Longer Integrated Historically, California utilities owned and operated all elements of the State's electric system. The PUC regulated the entire systemⁱⁱⁱ of utility generation, distribution and transmission through its control of retail rates. The also regulated service reliability, utilities' dealings their customers, and the availability of different types electric service. The PUC responsible for – and had tools to police -- the utilities' service to consumers. FERC regulated wholesale transmission rates and power transactions between utilities and between utilities generators. But because utilities owned most power plants, and sold power directly to the customer, ## 1990s Policies Split Up Electric System Components PUC with • Generation run by for profit plant owners sold at auction. of was the - Transmission system is run by autonomous entity accountable to selfperpetuating board. - Only distribution companies (utilities) interact with customers and are accountable to regulators. and FERC did not set California power rates. Historically, the PUC and the FERC had a complementary role in setting wholesale rates for non-utility power producers, called "qualifying facilities." #### Pre AB1890 Post AB1890 Regulated by "Competitive Market" the PUC Utility-Owned Prices set by bidding in the "Power Exchange" ■ I Itility Purchases FERC-controlled Users buy power directly from Generation Regulated by Regulated by the PUC **FERC** ■ Independent System Operator Utility-Operated (ISO) with EOB "oversight" System **Transmission** For more than fifty years before 1996, the structure of the California electricity industry changed little. Investor-owned utilities owned and operated power plants and wires, and they charged retail electricity rates as set by the PUC. As the chart below shows, the vast majority of power used in California was produced either by a for-profit or municipal utility, both regulated by public entities. Transactions between utilities and with other States were overseen by the FERC. Both the PUC and the FERC were required by law to set "just and reasonable" rates. They did so by basing rates on demonstrated costs and acting as a brake on price run-ups. But in the early 1990's rising retail prices and a philosophical shift away from cost-of-service regulation and toward competition led to calls for reform. Before the 1980s. Investor-owned utilities planned, built, owned, and operated distribution, transmission, and power plants under PUC supervision. Prices for energy were set
according to the costs of running power plants, and these costs were scrutinized by the PUC to ensure reasonable prices. Utilities were held accountable for reliability by the PUC and the public, and utilities had strong incentives to plan and operate their power plants and other facilities to give highly reliable service. During this period, the utilities pursued investments in large power plants and nuclear facilities. • The 1980s. In the I980s, utilities also administered energy efficiency and conservation programs using ratepayer funds under PUC supervision. State energy planners and regulators balanced supply and demand through Integrated Resource Planning, building new power plants when needed but investing in conservation and energy efficiency to minimize the need for costly new plants. By this time, nuclear plants were built and running, and the cost of producing that power increased utility rates. Late in the decade, utility rates were driven up further by higher fuel prices and policies that encouraged QFs to build new private, non-utility power plants. As the chart to right shows, during this period power plants were largely owned utilities or public agencies, and rates were overseen by state or local government. • The Early 1990s. In the early 1990s, PUC's and past administrations' commitment to integrated resource planning waned. The PUC's policy increasingly emphasized competitive provision of power. It used a bidding process^{iv} to choose new power plants to meet projected demand, but little or no new capacity was actually built before that process was superseded by the mid-90s, policy shift away from cost-of-service regulation and toward reliance on pure market forces. The chart on the following page shows who owns power plants in California now. In 1994, the PUC recommended fundamental structural reform that would move substantial regulatory authority to the federal government. In 1995, the PUC made official its commitment to competitive market models when it issued an order directing the utilities to "unbundle" their integrated systems^v and in 1996, AB 1890^{vi}, responded to and shaped the actions already underway at the PUC. In sum, the PUC direction, as shaped by AB 1890: - Transferred pricing of California's electricity generation to the FERC by creating the California Power Exchange, a private nonprofit organization which would set wholesale sales of electricity: - Created incentives for utilities to sell their generation facilities to unregulated private power companies; - Transferred operational control of the utility-owned transmission system to the ISO, a private nonprofit organization which would manage the transmission system and its day-to-day operations under FERC oversight; - Let the utilities retain ownership and control of the distribution system; - Set rates in a way that accelerated payoffs of the capital costs of utility power plants by permitting the utilities to "freeze" artificially high rates and use revenues exceeding costs to pay down capital investment. The amount used for this purpose is listed as a "CTC" charge on every Californian's electric bill. Provided that the rate freeze would end when the capital costs of utility generation assets have been recovered or at the end of a 2001, whichever occurs first. The rate freeze ended for SDG&E in mid-l999viii; it remains in place for PG&E and Edison. Every constituency group endorsed AB 1890, except one consumer group that took no position. California lawmakers and their constituencies were optimistic that the new model would bring prices down and assure safe, reliable power. #### 3. Purchases and Sales of Power Under the New Structure The new system of buying and selling power, and the rules that govern those sales and purchases, is extraordinarily complex. Simply stated, a day in advance, participating generators bid power into the wholesale market auction, conducted by the PX and their counterpart buyers, estimate and order the power needed to meet California's electricity demands. On the basis of hourly supply and demand bids and orders, the PX sets the price to be paid to all power sellers at the highest amount for that hour, even if some sellers would have sold power lower price. The ISO then directs the flow of electricity throughout the State. When supply purchased in the PX market is less than the State's demand for electricity, the makes up the difference by purchasing enough electricity balance the load and meet specified "reserve" levels. The Independent System Operator administers a graduated system of increasing alerts to maintain **How Wholesale Electricity Prices Are Set** bid at a - At the PX, electricity sellers are paid the highest amount bid by any purchaser. - At the ISO a real time market commands high prices for electricity needed immediately to keep the system operating. - ISO price caps fluctuated during the past year from \$250 to \$750 and back. operating reserves – the buffer capacity needed at all times to keep the electric system stable and functioning. When forecasted reserves for the next day fall below 7%, the ISO issues an Alert, and generators are asked to increase their power bids into the market. When forecasted reserves for the current day fall below 7%, the ISO issues a Warning, and the ISO begins buying supplies directly. When actual reserves fall below 7%, then 5%, then 1.5% the ISO issues first a Stage 1 Emergency (public appeals and other measures to increase supply and decrease demand), then a Stage 2 Emergency, (interruptible customers are curtailed), and finally a Stage 3 Emergency, the highest level, under which firm customers (including residential and commercial) are blacked out to keep the system from crashing. ISO to The ISO purchases "ancillary services" – generation products needed to enable it to instantaneously balance load by ramping generators up and down – that include both the capacity to produce electricity, and the actual production. There are a number of "auctions" for ancillary services into which generators can bid under current rules; in addition, schedule coordinators (SCs) can adjust their schedules to enable the ISO to balance the system. In addition, the ISO has signed long term "reliability- must-run" contracts with some generators whose power is used to keep the transmission system stabilized. These R-M-R contracts provide a degree of control comparable to the former utility integrated ownership. The ISO limits the top price purchasers will be charged for electricity with "price caps" approved by the FERC through the tariff process. Wholesale price caps limit the market's ability to drive prices up during periods of short supply. The use of price caps recognizes the potential for sellers' market power or customers' inelastic demand to drive up prices. Currently, the law requires that California electric utilities, which serve the vast majority of California customers, purchase all of their power through the ISO and the PX. However, individual (usually large) customers and marketers may purchase power outside the PX by signing "bilateral" contracts with marketers or generators. The ISO's centralized system still directs the flow of electricity, but prices and service conditions are established by private contract. #### 4. California in the National Context California was the first state nation to create a separate independent system operator - the ISO - to control utility-owned transmission facilities. California moved first and furthest in divesting the utilities of their power plants. created an exchange - the to run wholesale power auctions and shape wholesale power products, futures. The separation of power sales function and the transmission control system function into two separate **CA Unbundled Electricity Elements** - California created the first ISO. - Other states did not separate control/dispatch from the pricing function. - Other states do not expose ordinary customers to market imperfections to the same degree. It PX - in the like the organizations is a distinguishing characteristic of California's experiment. The separation of these functions also complicates the operation of California's wholesale electricity market. Several other states have followed California in designing their electricity industries with ISOs that are regulated not by State or local authorities, but by the FERC. However, California is the only state with an ISO comprised of stakeholders rather than an ISO that is a public agency. Twenty-five states have not yet restructured their electric industries, apparently awaiting the results of changes in California and Northeastern States. In addition, municipal utilities in California have been cautious to join the new statewide system. Although they have coordinated some of their system operations with the ISO, the PX and the State's other utilities, municipal power companies have retained their power plants and control of their transmission systems. This control has protected customers of municipal utilities—like the Los Angeles Department of Water and Power—from the price shocks and supply shortages that have occurred in other parts of the State this summer. California's choice of restructuring plans has made a difference in California prices and supply conditions, even though California is part of a tightly interconnected grid that courses through several states in the Western Region. California participates in the Western Systems Coordinating Council, a voluntary organization that coordinates the activities of the "control areas" that make up the grid. The WSCC establishes reliability standards, such as operating reserve requirements, that protect the larger system for all interconnected participants. The California ISO is the largest control area. It buys and sells enormous quantities of electricity, dispatching power from plants and operating the California transmission system. Unlike the other utilities that
participate in the WSCC, the ISO is neither a governmental body nor a state-regulated utility. The California ISO has no responsibility to California consumers. Indeed, it seeks to control the transmission system in several states as a regional operation. #### **Conclusions** Over the past twenty years California has transformed its electric system from one that was integrated and highly regulated to one that is unbundled and increasingly subject to competitive markets and federal oversight. Although the state retains regulatory control over utility distribution systems, the FERC regulates the transmission system operations and transmission rates. The FERC also regulates the terms and conditions of most power trades in California because most are now wholesale transactions rather than retail transactions which would be subject to state regulatory oversight. In addition, power sales and transmission are controlled mainly by two private, nonprofit organizations that have no duty to serve California's public. Under California's new system, California power purchasers so far this summer have paid much more for power than in the past and the system has been more vulnerable to supply shortages than ever before. #### II. THE LESSONS OF SPRING 2000 The events giving rise to this Report started with ISO calls for widespread interruption of industrial and other large customers on May 22, 2000, and the imposition of rolling blackouts in the Bay Area on June 14, 2000. Beginning in May 2000, costs for power in all regions and economic sectors of California increased by billions of dollars. On several days in the second quarter of the year, reliability was significantly compromised. The appearance that reliability has been compromised makes all the more distressing the huge run-up in prices – Californians are paying a lot more for a lot less, in terms of service. # 1. Coordination Problems Occurred in May, Triggering Unnecessary Power Interruptions. On May 22, 2000, the weather was hot in Northern California. The ISO anticipated an electricity shortage and declared a Stage 2 emergency at 11:40 a.m. It called for utilities to curtail service to several hundred large customers. A Stage 2 emergency means that #### May and June Interruptions - Some customers pay lower rates in exchange for agreeing to cut demand when facing short supply. - Other customers pay for pay for highly reliable service. - In May the ISO curtailed interruptible customers – based on a calculation error. - In June the ISO blacked out 100,000 customers as well. operating reserves are less than 5% of expected load; curtailment means that some customers, must reduce their consumption and shut down operations of necessary. These customers who are paid in advance for this responded promptly. Some sent their employees home. But it very quickly developed that the ISO had made a calculation error, losing track of approximately 1500 MW^x of available power, and leaving that power out of its calculation. On June 14, PG&E was required to intentionally interrupt nearly 100,000 customers (residential and small business) for the first time in its history. This remarkable event was not related to insufficient supply in the ISO control area as a whole. Rather, it was related to grid instability in the Bay area. The transmission grid operates at a load level of 230,000 volts, with small deviations. If supply and demand get too far out of balance, a portion, then the entire system can crash, possibly spreading throughout the interconnected grid in the West. The Bay area grid instability was related to high loads and short supplies in that area, which could not be relieved given the design of the transmission system. It was exacerbated by the fact that the evening before, instability was created by generator decisions to generate energy without notifying the ISO Generators created these deviations in order to be paid a higher price within the ISO Control Area, and these deviations caused less than optimal voltage stability on its system. The ISO became aware of this instability on June 13; the stage was set for the following day. On June 14 the Bay Area suffered unusually hot weather for June, with San Francisco peaking at 103 degrees. Hot weather contributed directly to a record-setting peak load for June of 43,300 MW, system wide. PG&E peaked at 23,361 MW^{xii}, not counting the customers interrupted. On June 14, import capacity on the transmission system was limited, in order to keep the voltage levels on the grid stable. These import limitations reflected both technical constraints in Northern California and events outside the state. The loss of generation in the Northwest and work being done by Bonneville Power Administration on the British Columbia Hydroelectric Tie limited California's ability to import power. Voltage instability related to gaming on the previous day, import limitations, power plants out, and record temperatures set the stage for disaster on June 14, 2000. At 7:30 a.m. the CAISO announced that it would request PG&E to curtail 500 MW of interruptible customers beginning at 1200 hours to help correct voltage problems. Reactive support at the transmission and distribution levels was also required of PG&E and the municipalities (Silicon Valley Power, Northern California Power Agency (NCPA), Alameda and Palo Alto). The critical point below which a system crash becomes imminent is 225,000 volts. Late in the morning, the ISO determined that firm load dropping was imminent and requested PG&E to man all substations. In order to avoid a voltage crash in the Bay Area, the Newark Substation had to maintain a voltage of 228 kV. At 1313 hours, the Newark Substation dropped to 227,000 volts and headed toward 226,000 volts. This triggered the ISO's request for firm load shedding by PG&E. The following blocks were shed: | Block | Duration of | Number of | Number of MW | |--------|--------------|---------------------------|--------------| | Number | Outage | Customers ^{xiii} | | | 1A | 1313 to 1435 | 33,763 | 143.9 | | 1B | 1430 to 1535 | 17,616 | 132.1 | | 1D | 1530 to 1635 | 9,586 | 29.4 | | 2A | 1530 to 1635 | 36,064 | 115.5 | | Total | 1313 to 1635 | 97,029 | 420.9 | Once Block 1A^{xiv} was shed, by contract NCPA shed 3 MW at Palo Alto and 1 MW at Alameda. In a cooperative action, Silicon Valley Power offered to interrupt its non-firm customers, totaling 5 MW beginning at 1400 hours. In order to reduce further curtailments, the ISO loaded key 500/230 kV transformers and transmission lines either near or exceeding their ratings. The firm load shed caused voltage levels to stabilize and averted a wider event. The ISO issued a Stage 1 Emergency Notice throughout its system, due to a projected operating reserve of 5.3 percent beginning at 1:00 p.m., remaining in effect until 2000 hours. All firm load was restored by 4:35 p.m. with interruptible load restored at 6 p.m. #### 2. Retail Prices for Electricity Increased Substantially In the week, of June 11-15, purchasers of California power spent over \$1 billion to buy electricity, one eighth of their spending for all of 1999.^{xv} The effects of these price increases on customers depend on their choice of electricity supplies. Retail customers of Pacific Gas and Electric Company (PG&E) and Southern California Edison Company (Edison) are temporarily protected from the impact of rate spikes caused by direct exposure to high wholesale prices. Customers of municipal utilities may face higher prices, unless their governing bodies have deferred rate increases. Retail customers of nonutility electricity marketers, including renewable energy customers who have opted for direct access. may also have higher bills if their electricity rate is set as some percentage of the "PX price." Anecdotal #### San Diego Exposed to the Effects of De-Regulation - On five days in June electricity prices were 270% higher. - Edison and PG&E customers are insulated from price spikes by a temporary rate freeze. - San Diego's rate freeze has ended, as PG&E's and SCE's must by 2002. - San Diegans' electricity bills doubled. evidence suggests that this is the case. Because SDG&E is no longer subject to a retail price freeze, its customers' electric bills for June service more than doubled, as the chart below illustrates. The portion of retail customers' bills that goes to pay for electricity^{xvi} increased almost 300% (from roughly 5 cents to 15 cents). As a result, SDG&E's total rates for June are twice the national average for residential consumers. The charts below compare residential rates and residential bills for SDG&E, PG&E and Edison over the past decade. The rise in bills experienced in San Diego prefigure rises that will eventually come to other California customers. The high residential electricity rates demonstrated in the chart below will hit other customers unless something is done. ### Residential Rates (cents/kWh) Rates in Effect in July Currently, SDG&E may "levelize" its retail customers' liability for these wholesale electricity costs by spreading out the high electricity payments over a future period, pursuant to PUC authorization. Generally, however, the PUC is limited in what it can do to relieve customers' liability for these wholesale costs. The federal "filed rate doctrine" requires States to pass through to utility customers the costs of electricity that are purchased subject to federal tariffs. "SDG&E's purchases from the ISO and PX are federally tariffed. Thus, the FERC ultimately controls how much SDG&E pays for wholesale power. Whatever SDG&E pays for wholesale power, if allowed under a federal tariff, must by federal mandate be passed through to San Diego utility customers. The PUC may, however, inquire whether SDG&E's purchasing strategies were reasonable and resulted in reasonable rates. The PUC may exclude from retail rates recovery of costs determined to have been imprudently incurred. The San Diego price spikes,
impose particular burdens on fixed and low-income customers. The PUC sets a discounted rate for low-income customers by statute. Currently, the PUC requires that all utilities offer a 15% discount for low-income customers under the "CARE" program. This discount is clearly not a complete solution for customers whose bills have recently doubled. #### 3. Wholesale Prices Increased Substantially This summer's high electricity result from increased wholesale prices. Wholesale prices for May June 2000 are many times higher than for May and June The price increase is not explainable by increased costs, weather, volumes or even the existence of a much higher wholesale price cap, in 2000. A comparison of June 29, 1999 to 29, 2000, both relatively hot weekdays, illustrates the magnitude of the run-up in wholesale prices. Peak loads the ISO system were comparable: 40,443 megawatts #### The Wholesale Story bills Wholesale prices in 2000 were seven times higher than on equally hot days in 1999. and 1999. Peak volume was actually less on expensive days in 2000 than 1999 peaks. June Off-peak electricity prices were higher overall in 2000 versus 1999. on at 4 p.m. in 1999; 41,606 at 4 p.m. in 2000, a difference of less than 3 percent. Sales volumes in the PX day ahead market were also comparable, but prices in the day ahead market were much higher in 2000. A comparison of average prices illustrates the price difference.^{xix} A comparison of hourly loads reveals more. On both days, substantial load was supplied through the ISO-controlled real-time markets, 146,000 MWH in 1999 versus 191,000 in 2000. However, during the peak hours between 12 and 6 p.m., 3000 fewer megawatts were supplied through the day ahead market in 2000 than in 1999. This suggests sellers may have been withholding power from this market in order to drive up prices in other parallel markets. The ISO has adopted a policy of making premium payments for "replacement reserve" which can be called upon when supplies are short. On June 29, 2000, nearly 10 percent of load was supplied through real time markets at "replacement reserve" prices that were 50 percent higher than the astronomical prices above. The ISO has refused to provide us with the data necessary to determine what really happened. On both days, prices in real time markets reached the current price cap -- \$250 per megawatt in 1999 and \$750 in 2000. Had the 1999 price cap of \$250 been in effect in 2000, Californians might well have saved at least \$110 million on that day alone. On August 1st, after Governor Davis requested action, the ISO voted to reinstate the 1999 \$250 price cap, effective August 7th. This reduction to last year's levels will have some moderating effect on retail prices in the coming months. However, if the ISO continues to purchase substantial replacement reserves at uncapped prices, purchasers of California power will still be forced to pay higher prices. Total energy usage on June 29, 1999 was 763,000 megawatt hours, at a cost of approximately \$45 million dollars. On June 29, 2000, Californians used 795,000 megawatt hours, that cost them over \$340 million. Warm weather alone does not explain the magnitude of the enormous run-up in wholesale prices. Wholesale electricity costs were seven times the previous year's on days when loads were comparable. Further, as the chart below shows, the highest loads for 2000 were consistently well below 1999 peak loads. | Weekly ISO Peaks, May-June 2000
With 1999 Peak and Forecasted Peak for 2000 | | | | | |--|---------------|-------------|--------------|--| | Week Ending | Peak Day | Low for the | High for the | | | | | week | week | | | | | (MW) | (MW) | | | May 6, 2000 | May 2, 2000 | 18,983 | 33,148 | | | May 13, 2000 | May 12, 2000 | 18,762 | 31,287 | | | May 20, 2000 | May 19, 2000 | 18,140 | 34,375 | | | May 27, 2000 | May 22, 2000 | 20,041 | 39,521 | | | June 2, 2000 | June 1, 2000 | 19,910 | 36,137 | | | June 9, 2000 | June 6, 2000 | 19,502 | 35,417 | | | June 16, 2000 | June 14, 2000 | 19,065 | 43,447 | | | June 23, 2000 | June 21, 2000 | 20,482 | 41,414 | | | June 30, 2000 | June 27, 2000 | 18,302 | 42,693 | | | | | | | | | July 17, 1999 | July 12, 1999 | 20,710 | 45,574 | | | | | | | | Source: California Independent System Operator, Load comparison summaries, July 1999, May and June 2000, Press release dated May 10, 2000. California normally experiences similar weather conditions for extended periods in later summer months. Yet never before during a heat wave have purchasers paid the prices for California power that they have paid this summer. Moreover, higher wholesale prices this spring cannot be explained by higher wholesale prices for natural gas, which fuels most California power plants. Indeed, gas prices have almost doubled over the past year. However, wholesale prices for power in June 2000 have increased as much as tenfold over last year even during periods when demand was no higher than during comparable periods in June 1999. Even off-peak prices in June 2000 are more than four times their level in June 1999. Even if natural gas comprised 100% of power plant operating costs, the increase in natural gas prices would not explain the higher wholesale prices in California in June 2000. The unprecedented price levels of June 2000 may have had one predictable result. Many energy companies, including some participants in the California market, made very high profits during the second quarter. Detailed financial information recently reported by power plant owners is contained in Appendix A. Although it is difficult to isolate the financial results from California operations, power plant operators are reporting extraordinary profits for the summer. One company that purchased 1354 MW of power generating capacity from the utilities reported a 176% profit increase for the quarter ending June 30. Although these businesses also produce other products than electricity and sell them in other markets than California, such high profits suggest that this group of companies benefited substantially from the summer's unprecedented wholesale electricity price run-up in California. As a PG&E Vice President recently explained "If you've got the only Beanie Babies in town, you can charge whatever you want....Is that (price) gouging? I don't know."XXI The Federal Power Act requires that electric rates be "just and reasonable." Traditionally this has meant "cost based" rates in which investments in new or refurbished power plants were amortized over a long period of time, and profits were set at a reasonable level. Under the new market structure, wholesale prices for electricity are not necessarily based on costs. The FERC now permits power plant owners to sell wholesale power at "market-based rates," with very little evidence to support those rates as just and reasonable. It appears that the FERC's assumption—that the market will discipline wholesale prices—is not a reasonable one at this time in California. While the profits of unregulated California power plant owners rise, the summer's wholesale price spikes are putting PG&E and Edison at risk. California's utilities must buy high priced electricity in California wholesale markets, but under the mandated rate freeze, they cannot raise the retail rates they charge customers. Because they are still subject to the rate freeze imposed by AB 1890, PG&E and Edison must bear the power costs that exceed their revenues. PG&E and Edison incur these costs when they buy power from the PX on behalf of their customers. Under the terms of AB 1890, PG&E and Edison could potentially be liable for billions of dollars in excess generation costs. The extent to which Edison or PG&E will ultimately have to bear those costs will depend on the future prices of wholesale power, and net costs when balanced against the wholesale profits received as a power producer (for power from, for example, their nuclear generating units, Diablo Canyon and SONGS). FERC-authorized price caps imposed by the ISO have limited wholesale prices so far. On August 1, 2000, the ISO reduced the price cap from \$500 to \$250 per megawatt. However, the ISO's authority to impose price caps expires on October 31, 2000, absent a FERC extension. Without wholesale price caps, future wholesale electricity prices will almost surely continue to increase in the next several years. #### 4. Did Electricity Sellers or Electricity Buyers Game the System? Properly functioning electricity markets involve producers and consumers voluntarily selling and buying at mutually acceptable prices. Electricity is essential to the public welfare. Protecting the public interest requires that electricity be delivered at an acceptable price, electricity cannot be given up if the price becomes too high. Because the purchase is not discretionary, market theories of willing sellers and buyers with alternatives do not apply. The California "electricity market" actually consists of number of segmented and overlapping markets. In of the markets traditional supply and demand dynamics may apply. However, in the last and ultimate market – the real market conducted by the buyers have no alternatives. demand must be met. The ISO is obliged to ensure all demand is met, and also provide for adequate reserve support, including "replacement reserves". There is no other option in Markets are Complex – With Few Safeguards - The electricity market is actually a number of distinct markets: Bilateral markets, the PX market, and independent markets such as the APX. - The ISO's "real-time" market, creates a sellers' market. - Sellers know unfulfilled demand in the real-time market must be met, no matter what the price. - Sellers can work to use this demand to drive all prices higher. time ISO, All а some that to the real-time market. Even the other markets, - the California Power Exchange, the Automated Power
Exchange, and the bilateral markets, - are affected by the ISO's activities. When supply becomes tight in relation to anticipated demand, prices in all markets increase, in part because of the knowledge that unfilled demand in the final real-time market must be met - even if it is met at a very high price. This knowledge may induce sellers to withhold supply in order to raise prices in all markets. Withholding can be accomplished in very sophisticated ways. The combination of a flawed market structure and lack of investment in new generation over an extended period of time now exposes Californians to shortages and high prices. The ISO is a captive—as the buyer of last resort, it cannot refuse to buy at premium prices. Even worse, the ISO cannot reduce its price exposure through financial instruments or long term contracts. In addition, the largest consumers - the utility distribution companies – have only limited authority to reduce their own exposure. Where generation sellers also control transmission, they may have an unfair advantage, viewed from the perspective of competitors. Adopting the competitors' perspective, FERC has required "unbundling" of the transmission grid, so that combined control of generation and transmission cannot be the basis for undue discrimination in favor of the transmission owner's generation, even if that generation is dedicated to serving the generator's own retail customers. **xii On a number of days in June 2000, electricity demand was high. Being well-informed about market conditions, power-plant owners were able to bid high selling prices with the near certainty of selling power on those days. The owners' bids did not correspond to their variable costs, but were based on the high and inelastic levels of demand. This pattern was particularly apparent during the week of June 26 through 30. Ironically, this was the time when the ISO board, where power plant owners are well represented, was considering reducing wholesale price caps in order to limit power prices. The ISO decided not to lower price caps. We have posed the question whether suppliers could have colluded to drive prices higher. Such behavior would not be necessary to drive prices up, but it is certainly worth investigating to determine if it did occur and did contribute to the billions of dollars taken out of California during June. Pricing patterns in the PX "day ahead" and "day of" markets raise questions about the bidding behavior of market participants that cannot be coincidental. The EOB and the CPUC have been unable to obtain information about generator and marketer bidding behavior, partly because the ISO and PX have refused to provide that information to state agencies. **XXIIII* Because we have not had adequate information, we have not determined whether anti-competitive or illegal conduct occurred during June. The Attorney General, U.S. Department of Justice and FERC should cooperate with us in pursuing this question diligently. Nevertheless, a comparison of prices and demand levels in 1999 and 2000 is instructive. Wholesale market sales were virtually unchanged for comparable periods in 1999 and 2000. Yet retail prices increased by up to ten times from 1999 to comparable days in 2000. This cannot be explained by comparable increases in costs or supply-and-demand balances. Some commentators and interested parties characterize the effect as "scarcity rents," suggesting the exercise of undue market influences, or even collusion. It is unclear whether collusion or gaming caused the Bay Area black-out. However, it is clear that the unavailability of generation contributed to the Bay Area grid instability on June 14. Better coordination of generator maintenance schedules might well have helped maintain reserve and operating margins. But the issue of coordinating maintenance schedules can cut both ways. The failure to coordinate could result in the inadvertent scheduling of maintenance of several power plants simultaneously, and the consequent unavailability of needed generation. On the other hand, power-plant owners' coordinating maintenance schedules could result in a sophisticated form of market allocation, and a potential violation of the anti-trust laws. State authority to coordinate maintenance may be the only way to resolve the dilemma. This report cannot provide an exhaustive analysis of the possible problems in the way electricity is bought and sold in California. We do, though, have enough information to suggest that the system is operating in ways that are contrary to the public interest. #### 5. On June 14, 2000 Several Bay Area Power Plants Were Out of Service The lights went out in the Bay Area in part because nine power plants were out of service, either for scheduled maintenance or repairs, or were operating at limited capacity. PG&E could not import enough power to make up for the lost generation because the region has limited transmission facilities over which to import power. The following chart shows the status of power plants in the Bay Area that were not available on June 14. xxiv If any of these plants had been up and operating, the June 14th black-outs might have been averted. This summer so far, the power supply system has also been supplemented by curtailments to "interruptible" customers, #### **Down Plants Hamper Reliability** - Generators performed maintenance during hot weather. - Bay Area transmission depends on local plants' running. - PG&E could not import because plants were down. generally large industrial customers that in the aggregate consume more than 3,000 MW of load. Interruptible customers contract for discounted electricity rates year-round in exchange for agreeing to be interrupted when power reserves dropped below 5%. This program helps to manage electricity supply in times of shortage, but the amount of capacity available is limited because relatively few customers are willing to shut down their industrial processes whenever the electric system is stressed. So far this year, the ISO has interrupted power to these customers when it has called a Stage Two emergency. The interruptions are voluntary, and utility ratepayers spend over \$200 million per year to obtain the right to interrupt certain customers in times of short supply. The lower rates interruptible customers pay year round average out to \$60,000 to \$70,000^{xxv} per megawatt per year in benefits for interruptible customers. Large California customers who account for more than 3,000 MW of load are currently enrolled in the PUC's interruptible programs. Limits on the number of total hours of interruption prevent interruptible customers from being shut down for unreasonably long periods, or unreasonably often during the year. For example, PG&E limits interruptions to no more than 30 per year for any given interruptible customer, and Southern California Edison limits its program to 25 interruptions per year. The discount is a cost assumed by California customers for this additional electricity resource. #### 6. Could the ISO Have Averted Power Outages on June 14? The question remains whether the ISO might have averted power outages in the Bay Area. The City of Santa Clara, which operates its own utility, took an innovative approach to the supply squeeze on June 14. It contacted large customers and asked them to voluntarily cut back their power so that they would not lose all power. As a result, the City acquired voluntary load reductions of 7%^{xxvi}--manageable brownouts instead of blackouts. By taking similar steps, the ISO might have reduced demand enough to avoid forced blackouts. In addition, the ISO made its blackout decisions based on a software program that has never been subject to public scrutiny or approval. The program's decisionmaking criteria and assumptions concerning the point at which blackouts must be ordered have never been validated in a public process or by a public Untested Computer Models and Unexplored Options May Have Contributed to Blackouts - The ISO decision to black out customers was based on a computer model developed without public review or approval. - Santa Clara achieved a 7% reduction by calling customers. - Extra power could have been available from OFs under contract. agency. Moreover, the ISO's computer model required demand reduction received no public scrutiny before its use on June 14. Additional power may be available from QFs that have power production contracts with utilities, which in turn sell the power into the grid. These contracts may not currently provide enough financial incentive for QFs to produce power above minimum contract requirements. The utilities may be able to motivate QFs to produce more power by committing in advance to a level of payments for additional power when needed to forestall supply shortages and modulate prices. Some market participants have estimated informally that such action could free up an additional 500-1000 MW of power around the state. #### **Conclusions** California customers have so far this summer endured electricity outages and, in San Diego, huge increases in their bills as a result of price spikes in wholesale markets. The extent of the summer's wholesale price spikes cannot be explained by hot weather, increased natural gas prices, or increases in demand. Other problems – such as out-of-service power plants, transmission supply constraints and a dysfunctional power market – may have contributed to the problems so far this summer. The state's short-term problems appear to evolve at least in part from past public policy choices regarding electricity supply combined with customer demand that has grown as a result of the state's robust economy. ## III. WHY CALIFORNIA'S ELECTRIC SYSTEM IS IN TROUBLE The high prices and outages of June 2000 were caused by a number of events and circumstances: - New power supplies are inadequate to meet increasing demand - Existing power plants are aging and in need of attention - Limited
transmission facilities have also contributed to short supply, especially in San Diego and San Francisco. - The State has reduced the role of energy efficiency and construction of renewable energy resources in recent years. - California's economy has flourished, creating new demand and its high technology sector is highly dependent on electricity. - California's electric system is no longer consistently reliable. The curtailments of power to large customers on June 14 were not isolated. The ISO has called 10 Stage II alerts in the past three years. Half occurred this year, with more alerts certain as the summer progresses. The ISO has curtailed power to more than 1200 of industrial customers since 1998, some customers for more than 20 hours this year alone. Before 1998, neither SDG&E nor Southern California Edison had ever interrupted industrial customers. Although PG&E interrupted industrial customers prior to restructuring, the frequency of curtailments to its industrial customers has significantly increased this year. The increase in Stage Two interruptions show that the electric system's margins are much narrower today than historically. #### Several Factors Contribute to System's Problems - Curtailments and price spikes are becoming more and more frequent. - Existing power plants are old and aging fast. - Energy efficiency and programs to buy new, clean, renewable power have been cut back in the '80s and '90s. - Current market structure allows high prices – even without gaming. had #### 1. California Has Made Only Limited Investments in New Power Plants in the Past Twenty Years New power plants are capital-intensive and have long lead times between planning and completion. Between 1996 and 1999, 672 MW of net generation capacity was added to California's electric generation capacity, adding less than a 2% capacity improvement to the approximately 55,500 MW on line. | Comparison of Net Generation Capacity Additions and Load Growth, 1996 through 1999 | | | | | | |--|-----------------------------|------------------------|--|--|--| | Year | Net capacity Additions (MW) | Growth of Peak
(MW) | | | | | 1996 | 462 | 2,376 | | | | | 1997 | 153 | 2,005 | | | | | 1998 | 6 | 2,464 | | | | | 1999 | 51 | (1,323) | | | | | Increase | 672 | 5,522 | | | | | Source: California Energy Commission | | | | | | State and federal regulatory policies have, discouraged new construction generally, and new investments by utilities in order to encourage others to build generation and increase competition in generation markets. However, potential investors in new generation faced uncertainty because of a number of policies and determinations: PUC regulatory ratemaking policy has provided incentives for utilities to forego new investments and defer maintenance. Specifically, "performance-based ratemaking" gives utility managers an incentive to save short term costs to make short term profits and to forego long term investments. #### State Did Not Take Advantage of Opportunities to Add Power - Between 1996 and 1999 California added only 2% to its generating capacity. - Investment in generation slowed when regulators put the risk for building generation on investors in 1995. - In 1995, FERC and CPUC action suspended a process where utilities would have entered into contracts for clean, renewable power. - State regulators in the 1990s abandoned Integrated Resource Planning in favor of letting the market decide where and when to build new power plants and where and when to take energy efficiency measures. As a result, investors assumed most of the risk of a plant's success or failure. Coordination to ensure adequate electricity supplies was subject to these market changes. - The PUC's "Biennial Resource Plan Update" (BRPU) policy pursued construction of new generation plants by unregulated firms or utility affiliates. The BRPU required utilities to put their planned new generation out to bid. Prospective generators submitted bids and began to plan construction, but the PUC ultimately never approved new plant construction in the BRPU proceeding. - On February 23, 1995 the PUC's BRPU process was suspended when FERC ruled that California could not require its utilities to enter into long term contracts with the renewable power producers. FERC relied on a technical legal principle that prevented California from requiring utilities to sign contracts that resulted in rates being set above avoided cost.xxxiii - State and federal tax credits for construction of renewable resources expired in the 1990s. State siting procedures in California are complex and create investor risk because of California's commitment to environmental protection and public participation in the permitting process. - California's weak economy in the early l990s may have discouraged new investments in the State's infrastructure. - The changing regulatory environment through the 1990s caused risk-bearing investors to wait until clear rules were established before applying to build new power plants. #### 2. California's Demand for More Electricity Has Outstripped New Supplies Between 1996 and 1999, California's growing economy caused peak period demand to increase by over 5,500 MW. The State's population, already the largest in the country, is increasing by 600,000 people annually. However, new demand for power increased even faster than the rate of growth in the State's economy. As the chart below shows, California's demand is expected to grow faster than new power plants will be built for the next several years. California—especially Silicon Valley—is the leader of the digital economy. California ranks first in the nation in the number of high-tech jobs. This new technology economy needs higher quality and more reliable power. Although the new economy's contribution to increased demand has been debated, clearly a shift in industry sectors contribute to our society's increasing use of all forms of technology that runs on electricity, contributes to electricity demand. According to the Electric Power Research Institute, computers consume about 13% of the nation's power. Another study places the electricity load attributable to the new economy at 2%. Whatever the level of electricity required, the effects of the digital economy on energy requirements will be felt even more strongly over the next few years, as more individuals and businesses take their commercial transactions on-line. Over the last three years the amount of information available on the Internet has increased ten-fold to over one billion discrete pages. Internet use by individuals in 1999 was 80% higher than the previous year. This market has a tremendous potential for growth—68% of manufacturers report they do not yet conduct purchasing transactions on the internet. California simply must keep up with the energy needs of high technology, a highly productive, fast growing segment of California's economy. Technology firms and, increasingly all businesses, require high quality, 24 hour power to operate successfully. In the digital economy, power interruptions are extremely costly. Hewlett Packard reports that a 20-minute outage at a circuit fabrication plant would result in the loss of a day's production at a cost of \$30 million. For purely digital companies, such as Oracle, the price of a power interruption is "millions of dollars per hour," according to the company's energy director. Smaller customers' electricity demand is also critical. Customer demand for electricity appears to be "inelastic" during certain times of the day and in hot weather "xxx" When demand is inelastic, the need to run air conditioning or maintain a threshold level of electricity use contributes to the risk of price increases during periods of high demand, such as hot weather. #### 3. California Power Plants are Aging and May Need More Maintenence California's power plants are aging. The chart below shows that 55% of the State's generation facilities more than 30 years old. plants need to be taken out service for maintenance and repairs more often than modern plants. Deregulation of generation have also motivated owners run California plants longer harder, leading to subsequent reductions in reliability. #### Older Power Plants Need More Maintenance to Keep Up Running - 55% of generation facilities are over 30 years old. - California's power plant maintenance scheduled pulls power off-line – or plants can go down without warning. - Power plant aging can chronic maintenance problems in the Bay Area are Older of more may to and A recent PUC investigation suggests that maintenance problems at some Bay Area power plants are chronic, and have already resulted in both "forced outages" (those that occur because of a system problem and cannot be avoided) and long scheduled downtimes. During June 2000, two of the five power plants surveyed had forced outages and one was down for scheduled maintenance. Moreover, old plants emit more pollutants than newer more efficient plants in general. Older plants may well need to schedule additional downtime for environmental retrofits or rehabilitation, especially to keep in compliance with emissions permits. The PUC's investigation analyzed the status of the power plants during June 2000, reviewed the plants' work management systems and maintenance programs, and examined maintenance records, operations logs, plant evaluation and assessment reports, failure analysis reports, and operations and maintenance manuals. The review revealed several causes for concern. - Generation owners decide when to schedule maintenance downtimes; the downtimes need not be scheduled when they would be least disruptive to the system. Maintenance was scheduled for June that could have been done before summer, or at least could have been coordinated with other plants' maintenance to keep a comfortable reserve available. - Some maintenance took much
longer than expected, increasing the risk of generation shortage. - Bay Area power plants are aging, so maintenance problems will worsen in the coming years. Moreover, when a plant is brought down for one repair, other problems are discovered. This extends plant downtime. And finding spare parts for unexpected repairs on an old plant can be time-consuming and difficult in itself. Over the next few years, many Bay Area power plants will be out of service for months to address maintenance problems that arise because of plant age. The time lost to a forced outage is unpredictable. Component failure can cause an outage lasting less than a day to as long as six months or more, which occurred to a power plant unit in 1999. Scheduled outages for equipment overhaul may take a week or up to four months or more depending on the extent of the overhaul. ## 4. California Retreated from its Previous Commitments to Energy Efficiency and Renewable Power. Historically, California addressed issues of energy supply and energy demand through an integrated assessment of energy demand and energy resources. The Warren-Alguist Act of 1974 requires the California Energy Commission to prepare a Biennial Report that analyzes an integrated supply and demand and provides the basis for a State energy policy. State energy policy included two elements: a commitment to analysis and management of electricity demand; and a commitment to resource diversity, recognizing that ## Public Policy Successful Planning Strategies - California had the most diverse mix of generation in the world by the 1980s. - Highly effective efficiency programs in the 1980s reduced the need to build more plants. - The state retreated from resource planning and energy efficiency in the 1990s in favor of competition reliance on a single fuel source makes the system vulnerable. During the 1980's, California utilities boasted about having the most diverse mix of energy generation technologies in the world. During the same period, the PUC developed utility-managed energy efficiency programs, funded through utility rates, which reduced demand and energy usage. The PUC also aggressively implemented federal policy enacted in 1978 under the Public Utility Regulatory Policy Act (PURPA). **XXXIIII* PURPA complemented the State's fuel and resource diversity policy by requiring utilities to contract with "qualifying facilities"--energy producers that used renewable resources, such as wind, solar, biomass, and small hydroelectric generation, or use newer, more-efficient fossil-fuel technologies. In the 1990s, the PUC's policy shifted away from the emphasis on renewable power production and strategic energy efficiency. The PUC shifted to funding energy efficiency programs that encouraged competition between energy service providers and away from than the specific, high impact, energy reduction programs that had previously been so successful. The effectiveness of these market-based programs has not yet been established. For example, existing building standards fall far short of their maximum energy efficiency potential. The PUC also suspended its program of promoting renewable resources in the Biennial Resource Plan Update (BRPU) proceeding after the FERC found technical problems with the way that the PUC set the price utilities would pay for power. The PUC subsequently moved away from its commitment to renewable energy in favor of the electric restructuring process that it initiated in 1994 and that lead to AB 1890. Other agencies followed suit. In addition, current energy efficiency policy centers on an academic debate about whether customers will be more responsive to prices with "real time" or "interval" metering. Theoretically, such meters will educate consumers as to the changes in electricity price as customers use that electricity. Economists predict exposure to high electricity prices will cause consumers to manage consumption, for example, by shifting electricity use to lower cost times of day or reducing usage in warm seasons. However the practical aspects of this concept are complex. The full cost of installing and operating meters especially for residential and small commercial customers has yet to be calculated with any precision. Edison currently offers installation of hourly meters that cost about \$400 for a small customer plus installation costs of as high as \$228. This meter does not even provide price information customers can see in real time. It stores information for retrieval (and billing) at a later time. In order "real time" metering to work, the customer must also know the price of electricity. Most meters on the market today require the customer to access prices by way of a separate contemporaneous source, such as the PX Internet site. Investigating the costs and technology advances that may help drive down those costs is worth exploring, but the state and costs of metering technology today indicate that customers cannot easily adjust energy use with metering alone. Moreover, metering every residential and business customer will not necessarily change the buying patterns of or provide any benefit to customers who do not use power during peak periods (for example, those who are at work and school during the day) or who cannot change buying patterns for reasons of health, comfort, or business necessity. (Examples include seniors, customers who live in the desert). For those customers who must use power during high priced periods, switching to real-time pricing with residential meters installed to identify high priced periods will result in higher bills, rather than bills calculated using the average prices they pay now. Customers who cannot afford higher bills, such as seniors on fixed incomes, may compromise their health and safety trying to avoid them. Metering offers the promise of significant control over non-essential electricity use. However, technology questions, costs and obsolescence concerns in this fast changing field caution against statewide immediate metering programs as the primary tool for customers to bring down retail prices. And energy efficiency efforts may well be hampered by focussing on undeveloped technology that has such complex policy implications. In the AB 1890 negotiations, proponents of renewable energy supplies and energy efficiency won legislated funding for energy efficiency renewable resources. However, pursuing a competitive market structure, policy makers made funding for these programs a low priority. The current funding for these programs is almost 70% less than it was in the early 1980s. The State's retreat from funding energy efficiency and renewable energy programs occurred despite the demonstrated economic benefits that energy efficiency brings to the California economy. RAND, for example, estimates that energy efficiency in the past 20 years has provided \$1000 in economic benefits to each Californian.xxxiv These benefits complement the State's commitment to environmental quality. ## <u>5. California's Commitment to Environmental Quality Guides the State's Supply Options.</u> The California Environmental Quality Act (CEQA)^{xxxv} and the federal Clean Air Act^{xxxvi} are two of the principal laws that ensure preservation of public health and environmental quality when power plants are constructed and operated. These laws focus on the environmental impacts of California's power choices. CEQA requires evaluation mitigation of potential environmental impacts from power plant before the State allows construction. In addition to reducing negative environmental effects caused by any one CEQA could be used to plan strategically for power plant siting, encourage and streamline construction in locations (e.g., to bolster reliability) and ensure lower cancer risk and ozone damage from emissions. Failure to conduct adequate environmental review can **Environmental Rules Prevent Delays and Promotes Cleanest Technologies** Generation without pollution control produces cancer cases and other problems. CEQA allows problems to be solved before new plants are built. Federal Clean Air Act requires emissions to be controlled. Running power plants consistent with environmental requirements meets federal requirements and benefits the State. and а plant, key grid result in CEQA litigation by citizens or local government agencies that can delay, change or eliminate a power plant project. Although CEQA exempts emergency measures, the statutory exemption is exceedingly narrow and only applies to measures taken in response to unexpected catastrophes that threaten the public. Courts have prevented agencies from using the emergency exemption when those agencies faced ongoing or existing conditions. An attempt to use this exemption to address short-term reliability risks court action, and it reduces long-term planning for efficient, renewable power sources. In addition to CEQA, federal, state and local laws govern air emissions from power plants. Local Air Districts enforce state, federal, and local air quality laws for stationary sources. Permits for major pollution sources, such as power plants, involve federal-and state- enforced rules, while small power units are regulated by local Air District rules that restrict size and limit operational schedules. As a whole, these rules limit power plants' discharge of cancer-causing or ozone-depleting emissions and chemicals, and they attempt to increase the efficiency of electricity generation. Both federal and Air District rules control emissions by requiring new air emissions sources, including power plants, to have pollution control devices that meet "Best Available Control Technology" standards and obtain pollution "offsets" before beginning operation. In addition, existing power plants must reduce pollution emissions according to pre-set schedules by retrofitting old plants, adding new controls and/or reducing total emissions in the area by getting "credit" for reductions from other sources.
The environmental and health benefits obtained by retrofitting and/or replacing old plants with new ones are large and measurable. For example, two existing San Diego power plants South Bay and Encina, emit 1100 tons of NOx per year <u>each</u>, while the new Otay Mesa plant will emit 90% less NOx per year (100 tons) while producing the same amount of energy as either of those plants. One of the promises of deregulation was that by building new, clean plants, California could take old, polluting plants off-line and thereby improve California's air quality. The failure to build new, clean and efficient capacity as demand increases means that California is facing even worse air quality because of the need to keep the old plants. This is exacerbated by, the environmental pressure of additional emergency emissions. Although the Air Resources Board (ARB) has created new rules to simplify calculations for air offsets and credits, providing a priority to power plants to obtain available offsets would require a change in state law. At present, owners of offsets can sell those offsets to anyone, without regard to the need for future power plants. In San Diego, the owners of South Bay and Encina power plants control most of the area's air pollution offsets. They have no incentive to sell them to clean new power plant competitors. Health concerns about power plant emissions are real. Preliminary ARB analysis shows that if all of the diesel emergency generators (approximately 1000) in San Diego fired up for a single day, it would add 75 tons of NOx to San Diego's air and increase public exposure to cancer-causing toxics. These emergency generator units have no emission controls at all. The Bay Area has two to three times as many diesel generators as San Diego. Increased use of currently installed emergency generator could threaten the federal Clean Air Act attainment status for the Bay Area. The ARB estimates that one diesel unit operating for 200 hours will cause 100 new cancers per million people. Owners of older power plants are put in a tight squeeze between the ISO rules pushing for additional run times and capacity and environmental requirements establishing minimum maintenance and retrofit schedules. If these plants stay up and running for the good of the system as a whole, they risk violating negotiated or required retrofit schedules. The failure to meet or exceed such schedules reduces the general availability of emissions credits for those or additional power plants, creating a spending problem. For example, the time it takes to retrofit old plants can be as short as a month or as long as three years. Costs vary widely depending on the size of the unit and the type of pollution controls installed. Most of that retrofitting time is spent preparing to install the controls; retrofits ordinarily cause plants to be non-operational for only a few days to a few weeks at a time. Some of the retrofitting rules were designed to use market incentives to encourage faster retrofits, enabling those who moved ahead of schedule to sell "credits" to those who were unable to do so. California's power crunch threatens to delay old power plant environmental retrofits because we need full-time power production from those plants. At the same time, delays would squeeze the number of credits available for purchase by plants or other industrial plants that cannot meet previously established schedules. One short-term suggestion for relieving immediate power needs is to use emergency generators more frequently or in advance of a Stage 3 emergencies. But this option creates significant environmental and public health damage. Emergency generators are old, typically burn diesel fuel and have few if any pollution controls. Air district permits constrain operation to emergency situations, test intervals, and/or total yearly operating times; more frequent operation subjects the owners to penalties. Emergency generators have reported that the ISO ordered them to operate their generators in advance of declared emergencies and owners of those units have received violation notices from local air districts for violating their permits. Using emergency generators caused both a short term and a long term problem. First, they create significant air quality and health problems when they run. These problems are exacerbated because hot days where electricity is in short supply are often also very smoggy days. Second, although investment in pollution controls can reduce some of the pollution, allowing these generator to run on a periodic or semi-regular basis, might cause the ISO to absorb and come to rely upon these power sources more regularly. Instead of investing in cleaner more efficient fuels, dirty old technology would become part of the power baseline, and it could displace investment in cleaner, more efficient means. #### 6. California's Wholesale Electric Market is Flawed California power markets are not now competitive. The ISO conceded this in its Market Surveillance Committee's most recent report: "California's energy and ancillary services markets have not been workably competitive during the last two summers...(W)e are unable to conclude that California's energy and ancillary services markets will be workably competitive during high-demand periods this summer." The reasons for the lack of competition may be many. The complexity and fragmentation of power purchase markets may be partly to blame. Their structure may encourage market participants to game the system to their benefit even while obeying the rules. Wholesale electric power has been fragmented into many products, that are independently priced in a series of auctions administered by the PX and ISO. The decision to segment wholesale power into four or more separate products creates significant market inefficiencies that serve to provide gaming opportunities for market participants, opportunities that may be perfectly available under current rules. Under the existing design of the system, the ISO cannot consistently purchase power at the lowest price. In theory, electricity buyers will find the least cost products; however, they may not have an incentive to do so. This constraint on the ISO provides another gaming opportunity for power plant operators. Further, the ISO is not permitted to purchase electricity from the PX when PX products are less expensive than the products bought and sold in ISO auctions. Creating further possible problems is the use of "scheduling coordinators". Scheduling coordinators are the intermediaries between buyers and sellers and the ISO. Scheduling coordinators coordinate the pricing activities of generators, other marketers and large consumers to balance supply with demand. This process may promote collusive activity because Scheduling coordinator transactions are not necessarily at arms' length. Scheduling coordinator functions exhibit significant economies of scale and scope, key attributes of a potential monopolist. As a result, Scheduling coordinators could evolve into large, unregulated oligopolies that have the opportunity to set the price of power and power products. #### **Conclusions** California's electricity supplies have not kept pace with the state's economic growth. Lagging investments in power plants result partly from regulatory uncertainty and a reliance on competitive markets to assume a comprehensive planning function that the state had previously performed on behalf of consumers and the state's economy. As power plants aged, California's economy grew and policy-makers retreated from aggressive efforts to promote energy efficiency and investments in renewable power resources. Moreover, the market itself is flawed. This compounds the mismatch between supply and demand for an essential service. These circumstances show that electric system governance is just not working for the benefit of California customers at this time. # V. GOVERNANCE OF THE NEW ELECTRIC STRUCTURE CANNOT ASSURE CALIFORNIA GETS REASONABLY PRICED, RELIABLE ELECTRICITY FOR CALIFORNIA Through the Twentieth Century, inexpensive, reliable electricity was assured by the close supervision of public agencies responding to public concerns and answering to the people of California. California's current electricity industry structure places autonomous, self-governing entities in roles formerly performed by government or utilities – planning, building, maintaining, and operating generation and transmission, and setting prices. This decoupling of accountability from control, and the dispersion of responsibility to market participants and away from government and utilities means that the events of Summer 2000 could be a permanent feature of the California economy. Currently, the ISO and the PX have the greatest influence over the pricing and day-to-day operations of the State's electric system. Yet despite of their enormous authority, the law does not require either the ISO or the PX to act on behalf of the state's electric consumers or its economy. AB 1890 provides that the PX and the ISO are accountable to their boards, which are comprised of "stakeholders," shown in the table below. Although some board members may have ties to consumer groups, they are in the minority. On the PX Board, only two of 25 current members represent residential consumer interests. On the ISO Board, only two of 27 current members represent residential consumer interests. Many board members are sell power or own generation facilities and therefore have an interest in keeping prices high. None of them has a duty to serve the California public interest. The ISO board is also self-perpetuating: it appoints its own members, subject only to approval by the EOB and the FERC. The ISO is also pursuing a change in its status to become a regional transmission operator (RTO). ### Membership of the ISO and PX Boards | ISO C.E.O. and President Investor-Owned Utility Transmission Owners (3) PG&E SDG&E SCE Municipal
Utilities (4) LADWP SCPPA SMUD TANC Government Market Participant Entities (1) DWR Non-Utility Electric Sellers (2) IEP Destec Public Buyers and Sellers (1) WAPA Private Buyers and Sellers (1) Enron Agricultural End-Users (1) AECA Industrial End-Users (1) CLECA Commercial End-Users (1) | Acting Chair (Residential End User) Privately-Owned Distribution Companies (3) PG&E SDG&E SDG&E SCE Publicly-Owned Distribution Companies (3) City of Lodi City of Pasadena LADWP Public Buyers and Sellers (2) MWD CA Dept. of General Services Private Buyers and Sellers (2) New Energy Ventures Mock Energy Non-Utility Generators (3) ESI Energy GWF Power Systems ARCO Agricultural End-Users (1) CA Farm Bureau | |---|--| | Commercial End-Users (1) | | In addition, as private entities, the ISO and PX are not fully subject to State laws regarding the conduct of their business. These boards conduct some of their business privately--in executive session—and then assert that they are not required to report the results of these deliberations. Although the federal government oversees the ISO and the PX, federal regulators pursue national interests, not necessarily those of Californians. For example, the FERC does not incorporate California's strong environmental values into its decision-making. FERC's oversight of the ISO and PX is limited in practice partly because it does not follow a comprehensive model or set of policies. Instead, FERC generally regulates the ISO and PX by approving or denying tariff proposals. California is one system among 50 different systems. Therefore, as a practical matter, the FERC probably cannot provide close supervision of the complex industry structures and the hundreds of utilities in 50 states, half of whom have created new structures that rely increasingly on federal action. Finally, FERC does not have comprehensive oversight of California's interrelated electric system. Accordingly, it cannot weigh the public policy options that might be available to affect development of each component part of the system—transmission, generation, distribution—and the costs and advantages of choosing among such alternatives as new construction, new rules, new programs or technical innovations. FERC cannot, for example, choose between the construction of an emergency peaking plant versus a substation upgrade according to the relative costs and benefits of each, when markets fail to respond to a need. It cannot address a regional transmission problem by funding investments in energy efficiency resources even if transmission facilities are more expensive. While no single agency, state or federal, may be in a position to regulate all parts of the electric system equally and comprehensively, the current structure is too fractured to assure California interests are promoted and protected. The State needs to reconsider oversight in the following areas: - Planning for New Generation. The ISO has assumed increasing responsibility for planning how match supply and demand and transmission system upgrades in coming years. But the ISO does not set generation prices and is not accountable to the public for keeping prices reasonable. Energy efficiency, renewable energy sources, and local concerns like power quality in Silicon Valley need play little or no part in the ISO's decision-making. - Reliable Operations. The ISO, which owns no electricity facilities itself, today runs the transmission system, negotiates with generators to provide reliability services, and performs virtually all of the non-distribution functions once performed by utilities. However, the ISO sends no monthly bills to residential customers, has no phonebank waiting to receive complaints when the lights go out, and is accountable only to its board dominated by market players, not by representatives of the public interest. The ISO may also find it difficult to coordinate fully with municipal utilities, some of which own generation and transmission, because the municipal utilities fear being incorporated into a non-governmental system they don't control. - Power Plant Maintenance. Just as the ISO is not directly accountable to the public, the current structure in California breaks the link between power plant owners and ultimate consumers. For example, neither the ISO nor any State agency has the authority to direct a generator to continue producing power in an emergency. For a century, when emergency threatened the reliability of California's electricity supply, state regulators and utilities had the responsibility and the authority to take immediate, appropriate action, and were directly accountable to the people. Today, with aging power plants, California has a structure that puts maintenance decisions entirely in the hands of power plant owners, whose interests conflict with those of consumers. - **Pricing.** In California today, the price of wholesale electricity is set by a spot market, not by government or utilities. The price of electricity is also not necessarily based on power plant costs or even what consumers are willing to pay. In the PX market, all electricity trades for a single price, a price set by the highest winning bid, even though other power plant owners are willing to sell their power at lower prices. This guarantees that customers do not receive the benefits of competition. This result is built into the California system as an integral part of the market design. Also, because California has two markets for power - one operated by the PX in a "day ahead" market and one operated by the ISO in a "real time" market – generators may withhold power in the PX day ahead market in hopes of realizing higher prices in the real-time market. During some periods, it is in the generator's interest to withhold some power because in so doing it can drive prices up, according to Severin Borenstein, a professor of business at UC Berkeley and PX Board member. According to Borenstein, restructured electricity markets may have attributes where "if firms of noticeable size are not exercising market power, they are doing so out of the goodness of their heart, and against the interest of their shareholders."xlii The "ancillary services" market – the market for things like reserve supplies – may also be susceptible to gaming. - Regional Future. The current structure of California's electricity industry creates risk that the high prices and poor reliability of this summer will continue for months, perhaps years to come. And despite the inherent problems and the impacts on California consumers, ISO seeks to expand its control to include not just California, but neighboring States as well. This would widen even further the gap between accountability and control. It would also dilute the ISO's concern for the State that created it. #### **Conclusions** The operation of California's vast and valuable electric system is now controlled primarily by the ISO and the PX, organizations that have no duty to serve California's